amer: Using lme4 to fit Generalized Additive Mixed Models
نویسنده
چکیده
The lme4 package uses sparse matrix technology and clever decompositions of the likelihood to fit linear, generalized, and nonlinear mixed-effects models. The amer package extends lme4’s scope to include generalized additive mixed models (GAMM). This vignette summarizes the main ideas behind additive models and their representation in the form of a mixed model, describes the modifications to lmer necessary for fitting GAMMs and presents some examples with real data. ∗[email protected] 1
منابع مشابه
Linear mixed model implementation in lme4
We describe the form of the linear mixed-effects and generalized linear mixed-effects models fit by lmer and give details of the representation and the computational techniques used to fit such models. These techniques are illustrated on several examples.
متن کاملUsing generalized additive (mixed) models to analyze single case designs.
This article shows how to apply generalized additive models and generalized additive mixed models to single-case design data. These models excel at detecting the functional form between two variables (often called trend), that is, whether trend exists, and if it does, what its shape is (e.g., linear and nonlinear). In many respects, however, these models are also an ideal vehicle for analyzing ...
متن کاملChanges to the Mixed Effects Models chapters in ELM
The book “Extending the Linear Model with R” (ELM) [5] first appeared in 2005 and was based on R version 2.2.0. R is updated regularly and so it is natural that some incompatibilities with the current version have been introduced. For most of the chapters, these changes have been minor and have been addressed in the errata and/or subsequent reprintings of the text. However, for chapter 8 and 9,...
متن کاملFitting Linear Mixed-Effects Models using lme4
Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixedand random-effects terms. The formula and data together determine a numerical repr...
متن کاملA case study on using generalized additive models to fit credit rating scores
We consider the estimation of credit scores by means of semiparametric logit models. In credit scoring, the fitted rating score shall not only provide an optimal classification result but serves also as a modular component of a (typically quite complex) rating system. This means in particular that a rating score should be given by a linearly weighted sum of rating factors. That way the rating p...
متن کامل